Estas en:

Función exponencial

Función exponencial

En la naturaleza y en la vida social existen numerosos fenómenos que se rigen por leyes de crecimiento exponencial. Tal sucede, por ejemplo, en el aumento de un capital invertido a interés continuo o en el crecimiento de las poblaciones. En sentido inverso, también las sustancias radiactivas siguen una ley exponencial en su ritmo de desintegración para producir otros tipos de átomos y generar energía y radiaciones ionizantes.

Definición de función exponencial

Se llama función exponencial de base a aquella cuya forma genérica es f (x) = ax, siendo a un número positivo distinto de 1. Por su propia definición, toda función exponencial tiene por dominio de definición el conjunto de los números reales R.

La función exponencial puede considerarse como la inversa de la función logarítmica (ver t36), por cuanto se cumple que:

Representación gráfica de varias funciones exponenciales.

Función exponencial, según el valor de la base.

Propiedades de las funciones exponenciales

Para toda función exponencial de la forma f(x) = ax, se cumplen las siguientes propiedades generales:

  • La función aplicada al valor cero es siempre igual a 1:

    f (0) = a0 = 1.

  • La función exponencial de 1 es siempre igual a la base:

    f (1) = a1 = a.

  • La función exponencial de una suma de valores es igual al producto de la aplicación de dicha función aplicada a cada valor por separado.

    f (x + x?) = ax+x? = ax × ax? = f (x) × f (x?).

  • La función exponencial de una resta es igual al cociente de su aplicación al minuendo dividida por la función del sustraendo:

    f (x - x?) = ax-x? = ax/ax? = f (x)/f (x?).

La función ex

Un caso particularmente interesante de función exponencial es f (x) = ex. El número e, de valor 2,7182818285..., se define matemáticamente como el límite al que tiende la expresión:

(1 + 1/n)n

cuando el valor de n crece hasta aproximarse al infinito. Este número es la base elegida para los logaritmos naturales o neperianos (ver t34).

La función ex presenta algunas particularidades importantes que refuerzan su interés en las descripciones físicas y matemáticas. Una de ellas es que coincide con su propia derivada (ver t41).

Ecuaciones exponenciales

Se llama ecuación exponencial a aquella en la que la incógnita aparece como exponente. Un ejemplo de ecuación exponencial sería ax = b.

Para resolver estas ecuaciones se suelen utilizar dos métodos alternativos:

  • Igualación de la base: consiste en aplicar las propiedades de las potencias para lograr que en los dos miembros de la ecuación aparezca una misma base elevada a distintos exponentes:

    Ax = Ay.

    En tales condiciones, la resolución de la ecuación proseguiría a partir de la igualdad x = y.
  • Cambio de variable: consiste en sustituir todas las potencias que figuran en la ecuación por potencias de una nueva variable, convirtiendo la ecuación original en otra más fácil de resolver.

    22x - 3 × 2x - 4 = 0 t2 - 3t - 4 = 0

    luego se ?deshace? el cambio de variable.

Por otra parte, un sistema de ecuaciones se denomina exponencial cuando en alguna de sus ecuaciones la incógnita aparece como exponente. Para la resolución de sistemas de ecuaciones exponenciales se aplican también, según convenga, los métodos de igualación de la base y de cambio de variable.

Enviar la página por correo a

* Campos obligatorios

Muchas gracias.
El artículo ha sido enviado correctamente.

cerrar ventana
¡Ayúdanos a mejorar! Tu opinión es importante, por lo que agradecemos que nos envíes tus opiniones y sugerencias a info@hiru.cominfo@hiru.com

* Campos obligatorios
cerrar ventana

 

¿Qué son los iconos de "Compartir"?

 

Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.

¿Para qué sirve cada uno?

  • facebook

    Facebook

    Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.

     
  • eskup

    Eskup

    Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.

     
  • delicious

    Twitter

    Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.

     
  • tuenti

    Tuenti

    Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.

     
  • technorati

    Google Buzz

    Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.

     
  • meneame

    Meneame

    Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.

     
 

 

cerrar ventana
 

Derechos de reproducción de la obra

 

Los derechos de propiedad intelectual de la web hiru.com y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.

No obstante, se permite el uso de los contenidos de hiru.com en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.

Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.

La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.

  Privacidad

Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.

El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.com.

cerrar ventana